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Abstract

This paper describes our strategy to approach re-
inforcement learning in robotic domains including
the use of neural networks. We summarize our
recent work on model-based reinforcement learn-
ing where models of hierarchical dynamic system
are learned with stochastic neural networks [Ya-
maguchi and Atkeson, 2016b], and actions are
planned with stochastic differential dynamic pro-
gramming [Yamaguchi and Atkeson, 2015]. Espe-
cially this paper clarifies why we believe our strat-
egy works in complex robotic tasks such as pour-
ing.

1 Introduction
The deep learning community is rapidly growing because of
its successes in image classification [Krizhevsky et al., 2012],
object detection [Girshick et al., 2014], pose estimation [To-
shev and Szegedy, 2014], playing the game of Go [Silver et
al., 2016] and so on. Researchers are interested in its ap-
plications to reinforcement learning (RL) and robot learn-
ing. Some attempts have been made [Mnih et al., 2015;
Levine et al., 2015a; Pinto and Gupta, 2016; Yamaguchi and
Atkeson, 2016b].

Although (deep learning) neural networks are a powerful
tool, we do not think they solve the entire robot learning prob-
lem. Robot learning involves many different types of compo-
nents; not only function approximation, but also what to rep-
resent (policies, value functions, forward models), learning
schedules (e.g. [Asada et al., 1996]), and so on (cf. [Kober
et al., 2013]). In this paper we describe our strategy for the
robot learning problem that is based on the lessons we learned
from many practical robot learning case studies. We empha-
size the importance of model-based RL (generalization abil-
ity, reusability, robust to reward changes) and symbolic repre-
sentations (reusability, numerical stability, ability to transfer
from humans). As a consequence, we are exploring model-
based RL with neural networks for hierarchical dynamic sys-
tem; learning models of hierarchical dynamic system with
stochastic neural networks [Yamaguchi and Atkeson, 2016b],
and planning actions with stochastic differential dynamic pro-
gramming [Yamaguchi and Atkeson, 2015]. An example of

Fig. 1: A state machine of pouring behavior proposed in [Ya-
maguchi et al., 2015]. This is a symbolic representation of
policy, and there is a corresponding hierarchical dynamic sys-
tem.

hierarchical dynamic system is illustrated in Fig. 1 which is a
state machine of pouring behavior [Yamaguchi et al., 2015].

In the next section, we discuss about our strategy. In the
succeeding sections, we summarize our recent work [Yam-
aguchi and Atkeson, 2016b; Yamaguchi and Atkeson, 2015].

2 A Practical Reinforcement Learning
Approach in Robotic Domains

In order to introduce our strategy, first we emphasize the im-
portance of the model-based reinforcement learning (RL) ap-
proach and symbolic representations.

2.1 Model-based RL
Although the current popular approach of RL in robot learn-
ing is a model-free approach (cf. [Kober et al., 2013]), there
are many reasons to use a model-based RL; dynamical mod-
els are learned from samples, and actions are planned with
dynamic programming.

Generalization ability and reusability There is some
model-free RL work trying to increase generalization (e.g.
[Kober et al., 2012; Levine et al., 2015b]). Model-based ap-
proaches can improve generalization by choosing adequate
feature variables that capture the task variations. Addition-
ally model-based approaches can reuse learned models more
aggressively. Let us assume a case where the dynamics of a
robot change (e.g. we switch a robot) but we still conduct the
same manipulation task. The dynamics of the manipulated
object do not change, thus we can expect to reuse some dy-
namical models without additional learning. For example in a



pouring task (cf. [Yamaguchi et al., 2015]), the dynamics of
poured material flow produced by tipping a container would
be common between different robots, except for a small effect
caused by the robots (e.g. a subtle vibration).

Another case of aggressive reuse is sharing models in dif-
ferent strategies. For example in pouring, there are different
strategies to control flow, such as tipping and shaking a con-
tainer. Sharing knowledge among strategies is possible at a
detailed level with the model-based approach. For example,
after material comes out from the source container and flow
happens, the dynamical model between the flow state (flow
position, flow variance) and the amount poured into the re-
ceiver or spilled onto a table can be shared between strategies.
Such sharing or reusing would not be easy in the model-free
approach.

Robust to reward changes During learning a task, there
are some factors causing changes of rewards, such as target
changes (e.g. target positions in reaching an robot arm; i.e.
an inverse kinematics problem), and reward shaping.

In these situations, model-based methods would be more
useful than model-free methods. Let us consider an in-
verse kinematics problem. We want to know joint angles
q of a robot for a given target position x∗ in Cartesian
space. Learning an inverse model x∗ → q becomes com-
plicated especially when: (1) number of joints are redundant,
i.e. dim(q) > dim(x∗), and (2) the opposite of (1), i.e.
dim(q) < dim(x∗). In (1), there are many (usually infinite)
solutions of q for a single x∗ (ill-posed problem). Handling
this issue is not trivial with the model-free approach that tries
to learn directly the inverse kinematics. An example of (2)
is the inverse kinematics of android face (soft skin); q is dis-
placements of the actuators inside the robotic face, and x∗

is positions of feature points (e.g. 17 points). Magtanong
et al. proposed learning forward kinematics with neural net-
works, and solving the inverse problem with an optimization
method [Magtanong et al., 2012]. This is an example of a
model-based approach. They tried to learn inverse kinematics
with neural networks, but the estimation becomes very inac-
curate especially when some elements in a target x∗ are out
of reachable range. Their model-based approach generates
minimum-error solutions in such situations.

Sometimes we make a goal easier to learn by manipulating
the reward function. Such a way is called reward shaping (e.g.
[Ng et al., 1999; Tenorio-Gonzalez et al., 2010]). This idea is
also useful when a task involves multiple objectives or con-
straints; e.g. in a pouring task [Yamaguchi et al., 2015], the
objective is pouring into a receiving container while avoiding
spilling. Since reward changes do not affect the dynamical
models, we can generate new optimal actions if the models
are learned adequately.

2.2 Symbolic Representations
Hierarchical Dynamic Systems The aggressive model
reuse as mentioned above works well when the entire dynam-
ical system is decomposed into sub-dynamical systems. We
refer to such a representation as hierarchical dynamic system.

The hierarchical dynamic system is also powerful to deal
with simulation biases [Kober et al., 2013]. When forward

models are inaccurate (this is usual when learning models),
integrating the forward models represented by differential
equations causes a rapid increase of future state estimation er-
rors (cf. [Atkeson and Schaal, 1997]). We model the mapping
from input to output variables of each sub-dynamical system,
so that we can reduce the rapid error increase by integrals.
After the task-level robot learning researches [Aboaf et al.,
1988; Aboaf et al., 1989], we can consider our representation
as a (sub)task-level dynamic system. We still need to esti-
mate future states through decomposed dynamics, which will
cause an error accumulation, but its speed is usually much
reduced.

Symbolic Policy Representation Symbolic representation
of policies is also useful. Especially in a complicated task like
pouring [Yamaguchi et al., 2015], symbolic policies are es-
sential. There are two major reasons: (A) Humans can more
easily transfer their knowledge of symbolic policies to robots.
(B) Symbolic policies are sharable in different domains. We
implemented the pouring behavior for a PR2 robot and we
could easily apply it to a Baxter robot; modifying symbolic
policies were not necessary although some low-level imple-
mentations were different such as inverse kinematics and joint
control [Yamaguchi and Atkeson, 2016a]. (C) A symbolic
policy introduces a structure into the task. Such a decompo-
sition increases the reusability of sub-skills. For example in
[Yamaguchi et al., 2015], most sub-skills are shared between
pouring and spreading. Pouring pours material from a source
container to a receiver, while spreading spreads material from
a source container to cover the surface of a receiver (e.g.
spread butter on bread). Pouring and spreading are sharing
many sub-skills; the major difference is moving the mouth
of the source container to cover the surface in spreading. The
symbolic policy representation enabled us to reuse many sub-
skills between pouring and spreading.

2.3 Model-based RL with Neural Networks on
Hierarchical Dynamic System

Our strategy for RL in robotic domains is summarized as fol-
lows: (A) The robot represents high-level policies with sym-
bolic policies, and learns them from humans. (B) The robot
decomposes the task dynamics into symbols along the sym-
bolic policies. (C) The robot learns each sub-dynamical sys-
tem with numerical methods if the dynamical system is not
modeled. Basically we model the mapping from input to out-
put variables (subtask-level dynamic system). If an analytical
model is available, the robot uses it. (D) The robot plans ac-
tions by solving dynamic programming over the models.

For (D), we use a stochastic version of differential dynamic
programming (DDP) to plan actions [Yamaguchi and Atke-
son, 2015]. For (C), we extended neural networks to be us-
able with stochastic DDP [Yamaguchi and Atkeson, 2016b].
Stochastic modeling of dynamics is also helpful to deal with
simulation biases.



Fig. 2: Neural network architecture [Yamaguchi and Atke-
son, 2016b]. It has two networks with the same input vector.
The top part estimates an output vector, and the bottom part
models prediction error and output noise. Both use ReLU as
activation functions.

3 Neural Networks for Regression with
Probability Distributions

We extended neural networks to be capable of: (1) model-
ing prediction error and output noise, (2) computing an out-
put probability distribution for a given input distribution, and
(3) computing gradients of output expectation with respect
to an input. Since neural networks have nonlinear activation
functions (in our case, rectified linear units; ReLU), these ex-
tensions were not trivial. [Yamaguchi and Atkeson, 2016b]
gives an analytic solution for them with some simplifications.

We consider a neural network with rectified linear units
(ReLU; frelu(x) = max(0, x) for x ∈ R) as activation func-
tions. Based on our preliminary experiments with neural net-
works for regression problems, using ReLU as an activation
function was the most stable and obtained the best results.
Fig. 2 shows our neural network architecture. For an input
vector x, the neural network models an output vector y with
y = F(x), defined as:

h1 = f relu(W1x+ b1), (1)
h2 = f relu(W2h1 + b2), (2)
. . .

hn = f relu(Wnhn−1 + bn), (3)
y = Wn+1hn + bn+1, (4)

where hi is a vector of hidden units at the i-th layer, Wi and
bi are parameters of a linear model, and f relu is an element-
wise ReLU function.

Even when an input x is deterministic, the output y might
have error due to: (A) prediction error, i.e. the error be-
tween F(x) and the true function, caused by an insufficient
number of training samples, insufficient training iterations,
or insufficient modeling ability (e.g. small number of hid-
den units), and (B) noise added to the output. We do not
distinguish (A) and (B). Instead, we consider additive noise
y = F(x) + ξ(x) where ξ(x) is a zero-mean normal dis-
tribution N (0,Q(x)). Note that since the prediction error
changes with x and the output noise might change with x, Q
is a function of x. In order to model Q(x), we use another

Fig. 3: A system with N decomposed processes. The dotted
box denotes the whole process.

neural network ∆y = ∆F(x) whose architecture is similar
to F(x), and approximate Q(x) = diag(∆F(x))2. ∆y is an
element-wise absolute error between the training data y and
the prediction F(x).

When x is a normal distribution N (µ,Σ), our purpose is
to approximate E[y] and cov[y]. The difficulty is the use of
the nonlinear ReLU operators f relu(p). We use the approxi-
mation that when p is a normal distribution, f relu(p) is also
a normal distribution. We also assume that this computation
is done in an element-wise manner, that is, we ignore non-
diagonal elements of cov[p] and cov[f relu(p)]. Although the
covariance Q(x) depends on x, we consider its MAP esti-
mate: Q(µ).

4 Stochastic Differential Dynamic
Programming

We use stochastic differential dynamic programming (DDP)
proposed in [Yamaguchi and Atkeson, 2015]. Stochastic
means we consider probability distributions of states and ex-
pectations of rewards. This design of evaluation functions is
similar to recent DDP methods (e.g. [Pan and Theodorou,
2014]). On the other hand, we use a simple gradient descent
method to optimize actions, while traditional DDP [Mayne,
1966] and recent methods (e.g. [Tassa and Todorov, 2011;
Levine and Koltun, 2013; Pan and Theodorou, 2014]) use a
second-order algorithm like Newton’s method. In terms of
convergence speed, our DDP is inferior to second-order DDP
algorithms. The quality of the solution would be the same as
far as we use the same evaluation function. Our algorithm is
easier to implement. Since we use learned dynamics models,
there should be more local optima than when using analyti-
cally simplified models. In order to avoid poor local maxima,
our DDP uses some practical methods such as multiple start-
ing points.

Fig. 3 shows a system with N decomposed processes. The
input of the n-th process is a state xn and an action an, and
its output is the next state xn+1. Note that some actions may
be omitted. A reward is given to the outcome state. Let Fn

denote the process model: xn+1 = Fn(xn,an), and Rn de-
note the reward model: rn = Rn(xn). We assume that every
state is observable.

Each dynamics model Fn is learned from samples with
the neural networks where the prediction error is also mod-
eled. At each step n, a state xn is observed, and then actions
{an, . . . ,aN−1} are planned with DDP so that an evaluation
function Jn(xn, {an, . . . ,aN−1}) is maximized. Jn is an ex-



pected sum of future rewards, defined as follows:

Jn(xn, {an, . . . ,aN−1}) = E[
∑N

n′=n+1 Rn′(xn′)]

=
∑N

n′=n+1 E[Rn′(xn′)]. (5)

In the DDP algorithm, first we generate an initial set of ac-
tions. Using this initial guess, we can predict the probability
distributions of future states with neural networks. The ex-
pected rewards are computed accordingly. Then we update
the set of actions iteratively with a gradient descent method.
In these calculations, we use our extensions of neural net-
works to compute the expectations, covariances, and the gra-
dients.

5 Experiments
This section summarizes the verification of our method de-
scribed in [Yamaguchi and Atkeson, 2016b]. First we con-
duct simulation experiments. The problem setup is the same
as in [Yamaguchi and Atkeson, 2015]. In Open Dynamics En-
gine1, we simulate source and receiving containers, poured
material, and a robot gripper grasping the source container.
The materials are modeled with many spheres, simulating the
complicated behavior of material such as tomato sauce during
shaking.

We use the same state machines for pouring as those in [Ya-
maguchi and Atkeson, 2015], which are a simplified version
of [Yamaguchi et al., 2015]. Those state machines have some
parameters: a grasping height and pouring position. Those
parameters are planned with DDP.

There are four separate processes: (1) grasping, (2) moving
source container to pouring location (close to the receiving
container), (3) flow control, and (4) flow to poured amounts.
The dimension of each state is: (2, 3, 5, 4, 2). There are 1
grasping parameter and 2 pouring location parameters.

We investigated on-line learning, and compared the neu-
ral network models with locally weighted regression. Af-
ter each state observation, we train the neural networks, and
plan actions with the models. In the early stage of learning,
we gather three samples with random actions, and after that
we use DDP. Each neural network has three hidden layers;
each hidden layer has 200 units. The learning performance
with neural networks outperformed that of locally weighted
regression. The amount of spilled materials was reduced.

We also tested alternative state vectors that have redun-
dant and/or non-informative elements. We expected auto-
matic feature extraction with (deep) neural networks. For
example we replaced a position of container by four corner
points on its mouth (x, y, z respectively). Consequently the
dimensions of the state vectors are changed to (12, 13, 16, 4,
2). Although the state dimensionality changed from 16 to 47,
the learning performance did not change.

The early results of the robot experiments using a PR2 were
also positive. A video describing simulation experiments and
the robot experiments is available:
https://youtu.be/aM3hE1J5W98

1http://www.ode.org/
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